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INTRODUCTION 

The key measure of performance of a rapid-fire weapon system is the burst hit probability. It is 
this statistical quantity that is most often used to express performance requirements for the 
development of a new weapon system. 

A desired level of performance, measured in terms of burst hit probability, is achievable 
provided bias and deterministic errors are maintained below some specified threshold and provided 
the ballistic dispersion, which accounts for the variation of the impact of the rounds about the aim- 
point, is held to some specified level. 

The mathematical expression relating the burst hit probability to these error sources is well 
known and provides the fire control engineer with a powerful analytical tool with which to design his 
fire control. A significant part of the design process is to develop an error budget which imposes 
error tolerances for the design and manufacture of each of the error contributing elements of a 
weapon system so as to ensure that the weapon system meets the required level of performance. 
Implicit in the development of such an error budget is the assumption that every weapon system 
built to the tolerances established by the error budget meets the performance requirements when 
tested. Experience from field tests, however, demonstrates that such an assumption is unwar- 
ranted. Nor is it defensible on engineering grounds, for it is conceivable that given the statistical 
nature of the errors contributed by the various elements, these errors may combine, for some 
particular weapon system, in such a way that this system will fail to meet performance specifications. 
Clearly then, unless the performance requirements are extremely lax, it is impossible to design a 
weapon system for which compliance with requirements is achieved for 100% of the weapon 
systems in a fleet. For this reason, it is reasonable to require that statements of performance be 
expressed in terms of the percentage of a fleet of weapon systems expected to meet the stated 
requirements. 

The purpose of this report is to advance an error budget development approach in which the 
percentage of fleet requirements is factored into the design process. Such an approach will typically 
result in an error budget that differs from that developed under the conventional method. Under the 
conventional approach, tolerances placed on the individual fire control elements are usually not 
sufficiently tight to allow for an acceptable fraction of the fleet to meet performance requirements. 
Furthermore, the two approaches produce significant differences in the value of dispersion that 
optimizes performance. 

DEFINITIONS AND ASSUMPTIONS 

In fire control, errors are generally classed according to their behavior over the duration of a 
burst, regardless of their origin or the statistical distribution to which they belong. They thus fall into 
one of three classes: 

Bias. These are errors that remain constant during a burst, but which typically 
vary from burst to burst and from one weapon system to another. Depending on 
the source, some bias errors may be controllable. 

Dispersion. These errors are random, and are responsible for the variation of the 
impact point of each round within a burst. Dispersion is due primarily to variations 



in gun and ammunition characteristics as well as variations in the gun orientation 
due to recoil. A measure of the dispersion is usually available early in the develop- 
ment phase of the weapon system and is taken to be the same for all bursts and 
all weapon systems in a fleet. It may be possible to design for a particular value of 
dispersion that maximizes hit probability. 

Deterministic. These are a form of bias errors that remain constant during a 
burst and are the same for each weapon system. A prime example is target pre- 
diction error. Given an engagement scenario and a prediction algorithm, estimates 
of target prediction error are often attainable. 

Throughout this report, random errors were assumed to be normally distributed.   The notation 
x~N(mx,ax) is used to signify that x is a normally distributed random variable whose mean value is 
mx and whose standard deviation is ax. Where appropriate, the symbol x will be used to designate 
the mean value of x. Unless otherwise stated, no correlation among errors is assumed. 

BURST HIT PROBABILITY 

The notion of burst hit probability is central to the design of a fire control system. It is used in 
the design of weapon systems to allocate an error budget among various fire control components; it 
is also a measure of system performance. 

The determination of a burst hit probability requires the definition of a suitable coordinate 
system to which the target and the incoming rounds may be referenced. In what follows, a burst of 
N rounds fired at a target from a single weapon system shall be referenced to a two-dimensional 
rectangular coordinate system centered at the target and in a plane which is normal to the terminal 
portion of the trajectory. The x axis is horizontal and the y axis is normal to x. The i"1 round of an N 
round burst will then have coordinates xi, y(. In addition, it is assumed that each error source can be 
converted into a gun pointing error, expressed in milliradians, which, in turn, translates into a two 
component projectile miss-distance error, ex, ey. For example, an error in measuring the tempera- 
ture of the propellant of a round translates to a miss-distance at the target measured in some con- 
venient unit such as the meter or milliradian. Furthermore, the relation between the original error 
source and the resulting miss distance error is assumed to be linear so that the condition of 
normality, assumed for the original error source, holds for the miss distance error. 

The total bias components of the miss distance error for any given round in a burst may be 
written as 

mx = bx + Dx 

and 

my =  by +  Dy /<| \ 

where bx,by are the two components of the bias error and Dx, Dy are the components of the 
deterministic error. It is assumed that for a rapid fire burst, the two components mx, my remain 



unchanged for each round in a burst. If exi, eyi are the random components for the ith round, the 
components of the total error are then given by 

txi — mx + &xi 

and 

Eyi = my + eyi (2) 

The random component is measured from the centroid of the burst. Its mean value, taken 
about the center of the burst, is therefore zero. Thus assuming that N is'large 

Ex = mx = mx = bx + Dx 

and 

Ey = my = my = by + Dy (3) 

Taking the.difference between equations 2 and 3, squaring, then taking the expected value, 
one finds the variance of the total error to be the variance of the random error ex, ey, or the 
dispersion. That is 

2 _ 2 
<JX   - <Jdx 

Cy
2   =   CTdy2 (4) 

where c^2, o^2 axe the variances of the dispersion along each of the two axes. 

In terms of these quantities, the single shot hit probability is given by 

Pss   =     L-(x-mx)2/2ax
2g-(y-my)2/2cy2

dA (5) 

2jraxCTy  X 

where the integration is over the target area A. This value of single shot hit probability remains 
unchanged if the firing conditions don't change. 

For a burst of N rounds, the burst hit probability is given by 

Pb=1-(1-Pss)N (6) 

The firing conditions usually vary from one burst to the next, so the burst hit probability then 
also varies from burst to burst. This variation is manifest in the changing values of (mx,my), the 



coordinates of the centroid of the burst. The usual assumption is that over all bursts fired by a single 
weapon system, the distribution of the mx,myis Gaussian so the burst hit probability PB averaged 
over all bursts is given by 

PB =  
27IC7bx. 

00 

     I Pbe-(mx-%)2 /2<7bx
2
e-(mrmy)2 /2°by2

cJmxCjm ^ 
bxCTby    J 

with Pb in the integrand given by equation 6. The variances of the bias, abx, aby are computed over 
all bursts. 

In the conventional budget development approach, it is this relation that is used to establish 
the overall error tolerance of the weapon system. Furthermore, the inference is usually made that 
the values of abx, aby apply across an ensemble of weapon systems. 

The proper interpretation of the crb's as ensemble statistics and their relation to percentage of 
fleet requirements is developed in the following section. The objective of this section is to show how 
these values are delimited by weapon system performance criteria, thereby providing the fire control 
engineer the means to set tolerances on each of the element error sources that are constrained by 
these limiting values. 

WEAPON SYSTEM ENSEMBLE 

Consider a set of particular weapon systems originating from the same manufacturing run. If 
the number of weapon systems in the set is large, one may refer to these weapon systems as con- 
stituting an ensemble. However, each fire control element of an individual weapon system has an 
inherent measurement or performance error that may be either random or bias or both. If the error 
is a bias, then it is fixed for a given member of the ensemble. Across the ensemble, however, it is a 
random variable assumed to be normally distributed. Thus, a weapon system selected at random 
from the ensemble, is characterized by a particular value of gun/ammo dispersion, which is assumed 
to be the same for each member of the ensemble and, for a single burst, a fixed bias error that is 
made up of the algebraic sum of the effect of all the element bias errors in the system. Given the 
values of the dispersion and bias errors, as well as the specifics of the engagement scenario and 
burst size, one may then calculate the burst hit probability for that particular weapon system. If it is 
assumed that the bias error remains constant during the burst, then equations 5 and 6 apply. 

Observe that in equation 5, mx,my are fixed for a particular member of the ensemble. Geo- 
metrically, they represent the coordinates of the center of the burst. Selection of another weapon 
system from the ensemble will yield a different value of Pb since that system is characterized by a 
different value of the bias mx,my. It is assumed that for each selection, the firing conditions are 
identical. 

Now consider some particular value of burst hit probability, P^, as set forth in a performance 
requirement, or equivalent^, some fixed value of single shot hit probability P^.  The problem is to 
determine the fractional part of the ensemble for which P^ > P^. The solution lies in the fact that 
the b (i = x,y) and hence the rrij are normally distributed over the ensemble. Since Pss = P^Od, mi, 
A) with mi given by equation 1 and A is the target area, and since both adand A are fixed across the 



ensemble, the only ensemble variables are the nrij. Assuming that ad and A are known, there then 
exists a locus of points (mx, my) in an mx, my plane such that the equation Pss = P«» is satisfied for 
each point of the locus. This locus is a closed curve in mx, my space such that on the curve, P^ = 
Psso whereas inside the region bounded by the curve, Pss > Psso- Furthermore, from the symmetry 
implicit in equation 5, it is clear that if the target area projected onto the x and y plane is symmetric 
about the x and y axes then this curve is also symmetric about the mx and my axes. 

Without further constraints, a closed form solution to this problem is impossible. That is, given 
a numerical value for Pss, one cannot find an algebraic equation for the locus from equation 5.   How- 
ever, the problem is greatly simplified if one assumes that a) the target is circular and that b) the two 
components of the variance of the bias error are equal; that is, that abx

2 = aby
2.   If the requirements 

are given in terms of a square target, one may assume, without incurring significant loss in accuracy, 
the projected area to be a circle of area equal to the area of the square target. From equation 1, it 
follows that a™2 = cmy

2. The locus of points for which Pss = P^o is then a circle. Inside and on the 
boundary of this circle, Pss ^ Pss0; outside, Pss < Psso- 

Let m be the radius of this circle. Then 

mx
2 + my

2 < m2 (8) 

defines the region within which Pss ^ Psso- If one assumes that the mean of the bias is zero across 
the ensemble, then bj ~ N(0, crbi) and from equation 1 , mi - N(Dj, abi). The probability F that the pair 
(mx, my) lies within the region given by equation 8 is then 

F  =  —^    U-(mx-DX)2/2ab
2
e-(my-Dy)2/2ab

2
dm  dm (9) W J y 

c 

where the integration is over the area of the circle whose radius is m. This is also the fractional part 
of the weapon system ensemble that satisfies the requirement Pss ^ Psso, since each member of the 
ensemble is characterized by a unique pair of values (mx, my). 

In the special case where Dx = Dy = 0, a closed form solution for F is readily obtained. 
Changing to polar coordinates, equation (9 may then be written as 

m    2« 

F = —Ur   I     Xe-^'^rdrdQ 
2nab

2 II 
or 

F = ^-e-"^/2cb2) (10) 

from which one obtains 

m = CTbV- 2ln(l - F) (11) 



Observe that m increases as F approaches one. This is to be expected since large m repre- 
sents small burst hit probability values that an increasingly large percentage of weapon systems can 
meet or exceed. 

RESULTS 

For many weapon systems, the gun/ammo dispersion is to some extent controllable, and can 
be incorporated as a design feature of the weapon system. Ideally, that value is chosen which 
maximizes the performance of the system. For this reason, it is desirable to have some measure of 
the variation of the burst hit probability with dispersion for fixed values of F and ab. Armed with such 
information, the weapon system designer may then select that value of ad, which maximizes the 
burst hit probability for a given value of F. 

Such information may be generated by computing m from equation 11 for given F and ab, then 
computing P^ from equation 5 under the assumption that the dispersion along the two axes is 
equal. Assuming that the projected area of the target onto the x-y plane is a circle of radius R, P^ is 
then constant everywhere on the circle mx

2 + my
2 = m2. One may then choose my = 0 in equation 5 

so that mx = m. Converting to polar coordinates with x = rcos9, y = rsine, the integral for P^ in 
equation 5 then becomes 

R    2JU 

-I 
p 

2noV  J    . 
o 

R    2n 

 -    I       |e-(rcose-m]P/2od
2
e-r2sin2e/2<jd

2
/.^^9 (<|2) 

CTd     J    J 

A tank size target is assumed in this analysis. Its dimensions are 2.3 m on a side. Converting 
this into a circular target of equal area, its radius is then 1.3 m. If a burst size of 20 rounds is 
assumed, one may then use equations 12 and 6 to generate the variation of Pb with ad. The results 
are shown in figures 1 through 3 for the case where the deterministic error is zero. 

As is evident from figure 1, when the standard deviation of the bias is small, ~5 milliradians, a 
large variation in dispersion can be tolerated with little or no affect on burst hit probability. In addi- 
tion, the sensitivity of F to Pb is slight, so that when a given burst hit probability is met or exceeded 
by 80% of the weapon systems, 99% of the weapon systems will achieve nearly the same level of 
performance. However, when the bias is 1 milliradian or larger, (figs. 2 and 3), the sensitivity of 
burst hit probability to dispersion is pronounced; so is the burst hit probability to the percentage F of 
weapon systems that meet or exceed a specific level of performance. 

Figure 4 was generated for the case where the deterministic error D has a non- zero value. To 
generate the curves in this figure, one must first note that the center of the bivariate normal distribu- 
tion in equation 9 is at (Dx, Dy) and that this distribution is circularly symmetric about this point. The 
existence of this symmetry is most readily demonstrated by noting that for the case where Dx = Dy = 
0, the integrand possesses circular symmetry (eq 10). Non-zero values of Dx, Dy merely translate 
this two-dimensional distribution to a new location centered at (Dx, Dy) so that circular 



symmetry is preserved about this point. It then follows that since the integration is over a circle, F 

depends only on the distance D = JDX + D* and not on the orientation of the vector D. For the 

case where Dx = Dy=1,D= D = JDX + D* = 4l. By these arguments, one is free to choose Dy = 0 

so that Dx = D =V2 and for ab = 1, equation 10, written in polar coordinates becomes 

2*  J   J 
e-(rcos6-j2)2/2e-(rs\n6)2re]rcjQ (13) 

Unlike equation 10, equation 13 does not admit a closed form solution. However, one may 
obtain numerical solutions to F by assigning numerical values to m. Choosing the desired values of 
F and the corresponding values of m, one then uses those values of m in equation 5 which, together 
with equation 6, can be used to generate the curves in figure 4. 

The presence of a non-zero deterministic error degrades performance as can be readily noted 
by comparing figures 4 with 2. Furthermore, dispersion must be increased in order to maximize hit 
probability. 

Observe that for a given F, there exists some value of ad that maximizes Pb. The objective of 
a good fire control design is then not to minimize the dispersion, but to select that value, based upon 
knowledge of bias and deterministic errors, that will maximize burst hit probability. 

As expected, the maximum value of Pb increases as F decreases. That is, a lower percentage 
of weapon systems can achieve higher hit probability values. Table 1 lists those values of ad which 
maximize Pb for the various combinations of F and cd that appear in figures 1 through 4. The value 
of m corresponding to a given F is also listed.   Under the conventional approach, one would use 
equation 7 to generate Pb versus ad. A sample plot is shown in figure 5, where it is assumed that 
there is no deterministic error and that the dispersions along the two axes are equal. The means of 
the bias errors mx, my over all bursts fired are also assumed to be zero. 

The assumption usually made, when applying Pb versus ad curves such as the one in figure 5 
to a fire control design, is that they represent the performance of each member of a fleet of weapon 
systems. As noted earlier, such an assumption is fallacious because it does not take into account 
the statistical properties of bias errors across an ensemble of weapon systems. As examination of 
figures 2 to 4 reveals the larger the percentage of weapon systems that is expected to meet 
requirements, the lower the expected value of burst hit probability. 

If one were to design a system with a ab = 1 milliradian and a dispersion of 1.4 milliradians, 
then, according to figure 5 (also table 1), a maximum probability of 0.975 is achievable. However, 
as figure 2 indicates, only about 80% of the fleet would achieve this value were these design 
parameters to be used. This example illustrates how, using the conventional approach, prediction of 
system performance is overly optimistic and may lead to acceptance of error budget tolerances that 
could result in unacceptable performance for a sizable percentage of the fleet. 

It should be noted that although the emphasis in this report has been on burst hit probability, 
the analysis is equally valid for burst kill probability. One need merely replace the target area with 
the target vulnerable area. 
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crb = .5 D = 0 

F        m 0d          Pb 

.80     .90 .60     .99 
.99     1.5 1.0     .99 

ab=1.0 3x=Dy = 1 

.80     2.5 1.6     .88 

.90     2.9 2.0     .78 

.95     3.3 2.2     .69 

.99     3.9 2.6     .57 

0b=1.O     D = 0 for figure 5 

CJd          Pb 

1.4     .975 

Table 1 
Values of dispersion ad which maximize Pb 

ab=1.0     D = 0 

F       m       ad 

80 1.8 1.0 .99 
.90 2.1 1.4 .95 
.95 2.4 1.6 .90 
.99 3.0 2.0 .76 

ab=2.0     D = 0 

80 3.6 2.4 .63 
90 4.2 2.8 .51 
95 4.8 3.6 .42 
99 6.0 4.2 .29 

15 
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